Multi-view Geometric Constraints for Human Action Recognition and Tracking
نویسندگان
چکیده
Human actions are the essence of a human life and a natural product of the human mind. Analysis of human activities by a machine has attracted the attention of many researchers. This analysis is very important in a variety of domains including surveillance, video retrieval, human-computer interaction, athlete performance investigation, etc. This dissertation makes three major contributions to automatic analysis of human actions. First, we conjecture that the relationship between body joints of two actors in the same posture can be described by a 3D rigid transformation. This transformation simultaneously captures different poses and various sizes and proportions. As a consequence of this conjecture, we show that there exists a fundamental matrix between the imaged positions of the body joints of two actors, if they are in the same posture. Second, we propose a novel projection model for cameras moving at a constant velocity in 3D space, Galilean cameras, and derive the Galilean fundamental matrix and apply it to human action recognition. Third, we propose a novel use for the invariant ratio of areas under an affine transformation and utilizing the epipolar geometry between two cameras for 2D model-based tracking of human body joints. In the first part of the thesis, we propose an approach to match human actions using semantic correspondences between human bodies. These correspondences are used to provide geometric constraints between multiple anatomical landmarks ( e.g. hands, shoulders, and feet) to match actions observed from different viewpoints and performed at different rates by actors of differing
منابع مشابه
Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملView-Invariant Action Recognition Using Latent Kernelized Structural SVM
This paper goes beyond recognizing human actions from a fixed view and focuses on action recognition from an arbitrary view. A novel learning algorithm, called latent kernelized structural SVM, is proposed for the view-invariant action recognition, which extends the kernelized structural SVM framework to include latent variables. Due to the changing and frequently unknown positions of the camer...
متن کاملStochastic kinematic modeling and feature extraction for gait analysis
This research presents a new model-based approach toward the three-dimensional (3-D) tracking and extraction of gait and human motion. We suggest the use of a hierarchical, structural model of the human body that introduces the concept of soft kinematic constraints. These constraints take the form of a priori, stochastic distributions learned from previous configurations of the body exhibited d...
متن کاملMarginalised Stacked Denoising Autoencoders for Robust Representation of Real-Time Multi-View Action Recognition
Multi-view action recognition has gained a great interest in video surveillance, human computer interaction, and multimedia retrieval, where multiple cameras of different types are deployed to provide a complementary field of views. Fusion of multiple camera views evidently leads to more robust decisions on both tracking multiple targets and analysing complex human activities, especially where ...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کامل